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Abstract--We describe the numerical computations of permeability and dispersivities of solute and heat 
for a periodic porous medium by solving certain boundary value problems for a unit cell. These cell 
problems are derived from the asymptotic theory of homogenization which systematically accounts for the 
effects of micro(pore) scale mechanics on the macroscale processes. Variational principles are devised to 
replace the cell boundary value problems and are then used for finite-element computations. The geometry 
chosen consists of a cubic array of uniform grains of Wigner-Seitz shape. Comparisons of numerical results 

with available experimental data and with other theories are discussed. 

INTRODUCTION 

The dispersion of passive solute in porous media is of 
wide-ranging importance in environmental and 
chemical engineering, while the dispersion of heat is of 
interest to the study of geothermal energy exploration 
and underground disposal of nuclear wastes. In 
hydrology where geological complexities and uncer- 
tainties are unavoidable, it is customary to bypass the 
micromechanical details in the pores and to begin with 
the averaged law of Darcy for the flow and empirical 
relation for dispersion coefficients. From a more basic 
viewpoint the stud3, of dispersion in porous media 
requires consideration of two important processes on 
the microscale. One Jls the fluid flow in the pores whose 
geometry is in general three-dimensional (3D) and 
complex. Another is the enhancement of diffusivity of 
solute or heat by the nonuniform convection in the 
pores. For both better scientific understanding of 
physics in disordered, media and for direct applications 
to certain manufactured materials, theoretical inves- 
tigations based on idealized models with an ordered 
micro-structure are helpful. 

Many previous theories for flow-through 3D 
porous media are based on a periodic array of spheres. 
Hasimoto [1] obtained the periodic fundamental solu- 
tion to the Stokes problem by Fourier series expan- 
sion, and applied the results analytically to a dilute 
array of uniform spheres. Sangani and Acrivos [2] 
extended the approximation [1] to calculate the drag 
force for higher concentration. Hasimoto's fun- 
damental solution was also used in [3] to formulate 
an integral equation for the force distribution on an 
array of spheres for arbitrary concentration. By 
numerical solution of the integral equation, results 
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for packed spheres were obtained for several porosity 
values. Continuous variation of porosity was exam- 
ined only when the particles are in suspension. Strictly 
numerical computations have been made earlier based 
on series of trial functions and the Galerkin method 
for cubic packings of spheres in contact [4, 5]. A 
general theory of flow through periodic porous media 
has been advanced by Brenner (unpublished manu- 
scripts cited in [6] and [7]) who showed how Darcy's 
law and the permeability tensor can in principle be 
computed from a cannonical boundary value problem 
in a unit cell. 

Theories of dispersion in porous media began with 
analytical models where the pores are replaced by 
networks of tubes in which the flow velocity is 
assumed to be either uniform [8] or parabolic [9-11] ; 
the 3D effects at junctions are ignored. For truly 3D 
grains and pores analytical theories are so far limited 
to dilute suspensions of spheres. By approximating the 
spheres as point forces, Koch and Brady [12] obtained 
some general results on the dependence of the longi- 
tudinal DL and transverse Dv dispersivities on the local 
Peclet number Pe. The result shows good agreement 
with experimental data in [13]. For a periodic lattice 
of uniform spheres the direction of the mean flow is 
important [12]. If the flow is parallel to a lattice axis, 
D L o(  Pe 2, but if the flow is inclined O L oC Pe instead 
[14]. Koch et al. [14] further pointed out the quali- 
tative differences between randomly distributed and 
cubically stacked spheres, at low concentration. For 
the latter geometry DL is found to be nearly pro- 
portional to Pe 2. For a comprehensive survey the 
reader is referred to recent books [6, 15]. 

For arbitrary porosity and truly 3D grains and 
pores, a rigorous theoretical basis has been laid in [7] 
where the method of moments of Aris for tubular 
flows is extended to three dimensional flows in peri- 
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A~ surface area per grain 
C specific heat 
DL longitudinal dispersivity 
Dr transverse dispersivity 
Dij symmetric dispersion tensor 
/iSim normalized dispersivity 
Eij antisymmetric tensor 
J stationary functional 
K conductivity 
kli velocity in Stokes cell problem 
( k )  permeability 
l microscale, cell size 
L macroscale 
M,~ fluid temperature in dispersion cell 

problem 
Arm solid temperature in dispersion cell 

problem 
n porosity 
Pe Peclet number 
Po scale of pressure variation 
Re  microscale Reynolds number 
Sj pressure in Stokes cell problem 
t~ convection time 
t2 diffusion time 
U scale of fluid velocity 

NOMENCLATURE 

(u~ ")) cell average of u ° 
xi fast coordinate 
X, slow coordinate 
Tf, T~ temperature 
V~ volume per grain. 

Greek symbols 
ef thermal diffusivity of fluid 
6ii Kronecker delta 
AP variation of 
A finite element mesh 
A Lagrange multiplier 
p viscosity 

unit micro cell 
p density 
z time scale. 

Superscripts 
* dimensional variables 
(i) ith order in perturbation. 

Subscripts 
f fluid property 
s solid property 
o scale of dependent variables. 

odic porous media. Brenner deduced the canonical 
boundary value problems in a unit cell, which must 
be solved to give first the interstitial flow and then 
dispersion tensor. Alternate theoretical arguments 
leading to the same canonical problems have been 
obtained by the method of local volume averaging 
[16], and by the asymptotic theory of homogenization 
[17-20]. Comprehensive surveys of these theories may 
be found in refs. [6, 15] and [21]. Numerical solution 
of these cell problems which are essential for obtaining 
quatitative information regarding the dispersion ten- 
sor is however not trivial. For  body-centered cubic 
packing of spheres, Lee [22] was only successful in the 
limit of zero Peclet number Pe. For 2D periodic array 
of cylinders, the calculated DL increases as Pe 1"7 and 
Pe  2 in [23] and [24], respectively, while Dr remains 
almost unchanged with Pe [24]. For 3D array of 
spheres, numerical results [25] also show DL increasing 
as Pe 2, as predicted analytically in [14] for dilute 
spheres. Based on a theory employing the method 
of local volume averaging, numerical computation of 
heat dispersivities in 2D periodic array of cylinders 
has been performed in [26]. Unlike the results in refs. 
[23] and [24], the longitudinal dispersivity DL increases 
as Per" where the exponent m varies from 1.71 to 1.86 
for the in-line array and from 1.26 to 1.54 for the 
staggered array. 

The purpose of this paper is to describe the numeri- 
cal computation of permeability and dispersivities by 
solving the cell problems derived from the homo- 

genization theory. On the microscale we consider a 
cubic array of uniform Wigner-Seitz grains [27] each 
of which is shaped like a cheap soccer ball [Fig. l(a)]. 
Thus each cell is a cube containing just one grain 
surrounded by liquid. One advantage of this microcell 
geometry, unlike periodically packed spheres, is the 
wide range of continuously varying porosity from 1/6 
to 5/6 for contacting grains. Details for solving two 
cell problems are described. The first cell problem is 
to find the Stokes' flow in a unit cell subject to unit 
global pressure gradient. The solution gives the local 
distributions of the pore fluid velocity from which the 
permeability is calculated. The second cell problem, 
called the B-field problem by Brenner, is for the con- 
vective diffusion inside the cell, whose solution gives 
the dispersivity for passive solute or heat. Both cell 
problems are solved by finite elements for which vari- 
ational principles are first established. Numerical 
results for small to moderate Peclet numbers are pre- 
sented and compared with existing theoretical and 
experimental data. 

Before describing the computational effort, it is con- 
venient to summarize the theoretical assumptions and 
framework regarding the fluid flow in the pores and 
the transport of heat (or solute) in the grains and in 
the pores. 

FLOW IN THE PORES 

Consider a model medium which is divisible into 
periodic cubes of dimension 1. Let Po be the charac- 
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Fig. 1. (a) A naicrocell with a Wigner-Seitz grain, (b) 1/8-th of the Wigner-Seitz cell with grains in contact 
and (c) l/8th of the Wigner-Seitz cell with grains in suspension. 

teristic variation of global pressure P* which may 
vary significantly (i.e. AP*/P* <~ O(1)) over the glo- 
bal distance L. Thus the global pressure gradient is of 
the order O(Po/L). For generality we also allow the 
cell size to vary slowly over the global scale L in the 
sense that All1 <~ O(1) over a distance L. Let the two 
length scales be in sharp contrast so that their ratio is 
a small parameter ~: = l/L << 1. Limiting to creeping 
flows the local gradient must be comparable to the 
viscous stresses so that the local velocity is 
U = O(PoF/#L), where kt is the absolute viscosity of 
fluid. Denoting physical and dimensionless variables 
respectively by symbols with and without asterisks, 
the following normalization may be introduced in the 
Navie~Stokes equations 

x*= lx~ AP* = PoAP u*= Uu~ (1) 

with i = 1, 2, 3. Twc, dimensionless parameters would 
then appear : the length ratio e and the Reynolds num- 
ber 

pUl pPol 2 1 
Re - - -  (2) 

/ff ] g 2  L 

which will be assumed to be of order O(e). By intro- 
ducing fast and slow variables, xi and Xi = exi, and 
multiple-scale expansions, it is then found that the 
leading order pore pressure p(0) depends only on the 
global scale, p(0) = p:O)(Xi)" By expressing the solution 
for u}°),p m in the following form 

8p(0) 
u} °) = -ko. c ~  (3a) 

0p(0) 
p ( I )  = =  _ S j ~ j  ..}_p(1) (3b) 

where pO)(X~) depends on X~ only, the coefficients 
ko.(xi, X~) and Sj(xi, X~) are found to be governed by 
the following canonical Stokes problem in the ~ cell : 

8ko. 
0x~ = 0 (4) 

in flr, with 

0s, 
ax~ - V2ko. = 6o. (5) 

ko.=0 on F (6) 

ko., Sj are fLperiodic in f~ and on 0f~ (7) 

where F and ~f~ are respectively the fluid-solid inter- 
face and the boundary of the fl-cell. Equations (4)- 
(7) constitute the first cell problem [28-32]. For a 
chosen granular geometry the numerical solution 
gives the local velocity and pressure fluctuation in 
terms of the global pressure gradient 8p(°)/SXj. Let the 
volume average over a microcell be defined by 

if, ( f }  = ~ fdf2 (8) 
f 

where Qr is the fluid volume in the cell. Then the 
average of equation (3a) gives the law of Darcy, 

Op(o) 
(u} ° ) )  = --  (k i j }  ~ (9)  

where (kij) is the hydraulic conductivity tensor, which 
is the permeability tensor divided by p. 

For later use we note that in physical variables 
(marked by *), the symmetric hydraulic conductivity 
tensor is given by 

F 
( k * )  = ( k , j } - - .  (10)  

# 

CONVECTIVE DIFFUSION OVER MICRO- AND 
MACROSCALES 

We shall summarize the results in [19, 20] obtained 
by applying the homogenization theory. Let the sub- 
scripts f and s distinguish quantities of the pore fluid 
and the solid grains, respectively. The starting basic 
equations for diffusion and convection of heat are 
given by 
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faL- OTr\ . 02Tr 
prCrt~ t +UJ~x/x/) = # c r ~  xk~O, ( l l )  

C aT, __O2Ts xaef~, (12) 

where (Tr, T~), (pf, p~), (Kr, K~), (Cf, C~) and (Of, 
O~) denote respectively the temperatures, densities, 
thermal conductivities, specific heats and partial vol- 
umes of the fluid and solid in the f~ cell. On the solid- 
fluid interface F, the temperatures and heat flux must 
be continuous : 

Tf = T~ XkeF (13) 

aT, OT~ 
Krax~n~ = K~ax~n~ xkeF (14) 

where nk represents the components of the unit normal 
vector pointing out of the fluid. In equations (11) and 
(12), energy dissipation by viscous stresses has been 
neglected, which is justifiable for low Reynolds num- 
ber flows. The transport of passive solute is a special 
case with K~ -= 0. 

Let us distinguish the cell-averages of quantities in 
the pore fluid and in the solid grains by 

l f f ; ~  . . l f f f~ <Fr> = ~ F,- dOf <Fs> = ~ Fs df~ 
r s 

(15) 

where Or, O~ and O are respectively the volume of the 
pore fluid, the solid matrix and the total composite in 
the unit cell. To get the effective convection~liffusion 
equation, one needs to solve the following two canoni- 
cal cell problems for the two vectors {M~,} and {Arm} : 

OM,, 02M,,, = pfCr~ ) XIE~r prCru~ °> ~ - Kr ~x, OX, 

02 Nm prCf o 

(16) 

(17) 

where n denotes the porosity and 

<pC> = npfCr+ (1 -n)p~C~ (18) 

is the O-cell average of pC and <u)°)> in dimensionless 
form has been given in equation (9). In addition, ~7# °) 
denotes the following difference, 

(19) prCf 2. (o),, 
U~°~ = U)°)- <pC> ""  / 

with the boundary conditions 

mm = Arm xj 6 F (20) 

(Kr OMm Ox+ - K s ~ )  n'=(Kr-K~)n' '  x jeF 

(21) 

and O periodicity. To render the solution unique we 
further require that 

<Mm> = <Nm) = 0. (22) 

After these vectors are solved numerically for a 
given cell geometry, an effective convective-diffusion 
equation on the macroscale can be derived [19, 20]. 
In particular, the dispersion tensor due to interstitial 
shear is defined in terms of M,  N~ according to 

r/am, aM,,,\ /aM  aM,\] 

r/ON/ ON,,\__/ONm aN, \ ]  
oxk / \ ox, + (23) 

For a nonconducting solid matrix or for a passive 
solute, Ks = 0, (23) reduces to the result in refs. [7] 
and [32] exactly. Since Mm and Nm depend on Kr and 
Ks nonlinearly, as is evident from the O cell problem 
defining them in Section 3, Dj,, does not necessarily 
vanish as Kr and K, approach zero. This is known for 
the special case of solute dispersion in a porous matrix 
composed of parallel tubes [7, 32]. 

Numerical results will be presented as functions of 
Peclet numbers, defined separately for heat and for 
passive solute as follows 

pfCfUl UI 
Pe - (heat) Pe = - -  (solute) (24) 

Kr 

where x = Kr/(prCf) is the molecular diffusivity of 
solute. U is the average of fluid velocity over the entire 
cell volume including the solid phase. For  solute only, 
the dimensionless total dispersivity is found from 
equation (23) by omitting the solid phase, 

l)jm (K>+Dj,,, <K>+Dj,,, 
-- (pC>K -- npfCfm -- 1 

I [/OM/ OMm~__( OMm _~_ om,~l 
l \ ox, (25) 

since Kf/(prCO = x. The right-hand side of (25) is the 
volume average over f~r only. For heat transport the 
dimensionless total dispersivity is defined as follows. 

<K>+D/.,/ Kr 

#<K> [/OMj OMm\__/OM m + O" , \ l  
={m +L\axk axe~ \ / j 

K~ F/ON, ON,,\ (ON,, ON, 

. p.,Cs+, \ 
n -~ ~ t I -- n)). (26) 

UNIQUENESS OF THE CELL PROBLEM 

Suppose that J~m and ~7 m represent the difference of 
two solutions of the inhomogeneous problems (16)- 
(22), the vector quantities 'Qm and AO~ must satisfy the 
homogeneous equations 
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prCru) ~ x ,  - K , - ~  = 0 x, eOr (27) 

Ks g'X~ axj = 0 x~ e f l ~  (28) 

J~m = Nm Xi e r (29) 

X r ~ n / =  K s ~ n  j x i E ' r  ( 3 0 )  

Mm and 37mareO-periodic (31) 

(a~,.)  = (370,> = 0. (32) 

Multiplying (27) by ~Qm and (28) by 37,. and inte- 
grating over Or and Os, we obtain after using Gauss's 
theorem. O-periodicity and the boundary conditions 
(29) and (30). that 

fn 3M" Oh4'~'dO+ [ Ks6337m (337mdO= 
Kr ~xj Ox i ,m, ~xj 3xj , O. 

f 

(33) 

For the left-hand side to vanish, the thermal gradients 
&Q~/Oxj and O37,./Oxj must be zero. Then ~Q,. and 37., 
can at most be microscale-independent constants. Let 
these constants be C~ and C2, respectively in Or and O~. 
Equations (29) and (32) guarantee that C, = C2 = 0, 
hence 

h'lr,, = 57,, = 0 (34) 

and the cell problem has a unique solution. 
Instead of the constraint (22) to ensure uniqueness, 

we have tried (as in refs. [26] and [33]) at first the 
apparent alternative by assigning a fixed value for 
either Mm or Arm at an arbitrarily chosen point in the 
unit cell. The rationale is that solutions corresponding 
to different choice cf  points would differ at most by a 
constant which would not affect the dispersivity. It 
will now be shown that this alternative does not ensure 
uniqueness and hence is unsatisfactory theoretically. 
Let (M", Nm) and (M~,, N~,) be two solutions satisfy- 
ing equations (16) (21), and obeying the following 
constraint at different points in fG M,,(P) = 0 and 
M~(P') = 0. Let us assume that the two solutions 
differ only by a microscale-independent constant, then 
their differences J14, = M.,--M~,, and 37m = Nm -N'., 
should be uniform in the microcell. These differences 
must satisfy equatians (27)-(31) and the following 
conditions 

d Q , , ( P ) = - M ' ( P )  and JQ,,,(P')=Mm(P'). 

It follows from (33) that either ~Q,, = -M',,,(P) or 
Mm = Mm(P'). But - M'm(P) and M,,(P') are in gen- 
eral not identical, hence ~Qm cannot be constant, and 
the original assumption is false. 

The numerical method of finite elements will be 
used to solve the cell boundary value problems for the 
Stokes flow defined earlier, and for the convective 
diffusion of solute or heat defined above. To ensure 
that the matrices for the nodal coefficients are sym- 

metric, we first replace the cell problems by variational 
principles; this reduces computer storage and 
enhances numerical efficiency. 

VARIATIONAL PRINCIPLE FOR STOKES 
PROBLEM IN A CELL 

By standard arguments it is possible to derive from 
the governing equations of the Stokes problem that 

6J = 0 (35) 

where J is 

gk o ~Sj ' <dO+ f koC-qdO J 

(36) 

We find it convenient to verify (35) by taking the first 
variation of (36) and by integration by parts 

fn ~ko O6ko [" /8Sj ) , d a +  I - ¢ ,  d n  6J = (~Xm m J n  r \ " i 

+ fn~ k° O6SJox~ d~ 

fo Okii ~-- n m d S -  ~Z k" 
= n OXm ~ki'~Xm~x~dn ,J~ f f 

+ k,f&n, d S - |  ~xaS, dn 
ftr d ~l r 

= ~klj ; ak i j - -n , .dS+;  aSjkonidS 

OZkq (~i/) d t l  
+ f 6 k ~ ( ~  (~Xrn 3Xm 

J f t  r \ • 

Here 30 and 8Or denote respectively the boundaries 
of the cell and of the fluid phase in the cell. In the unit 
cell, the fluid surface 0Or consists of two parts : the 
fluid-solid interface F, and the fluid part of the cell 
boundary 0Of c~ ~O. Now the volume integrals above 
vanish because of equations (4) and (5), while the 
surface integrals vanish because of (6) and (7). The 
reverse is also true. Hence the cannonical Stokes prob- 
lena in the O cell is the same as (35). 

VARIATIONAL PRINCIPLE FOR CONVECTIVE 
DIFFUSION IN A CELL 

Since the pore fluid velocity is already known by 
solving the Stokes cell problem, we have 6u~ °) = O. 
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The variations 6Mm and 3Nm must satisfy the homo- 
geneous equations (27)-(32). 

To derive the variational principle, we first multiply 
(16) by 5Mm and (17) by 6Nm, and integrate over the 
respective phase. Similarly, we replace ~Qm by 3Mm 
and Nm by 6Nm in equations (27)-(31), multiply the 
resulting (27) by M~ and (28) by Nm, and then inte- 
grate the sum of these products over the respective 
phases. The results are then added and conditions 
on the interface and ~-periodicity are applied. If the 
constraint (22) is further incorporated by the Lag- 
range multiplier method, a variational principle equi- 
valent to (16) to (22) can be obtained so that 

6J = 0 (37) 

where the functional J is 

J = f ~ (  -pfCf~(m°)M"+pfCfu~°)M'OMmOxj 

+KfOM'nOMm ~ m )  ~ ~ Kf an 

+ fn, \((P~C~)(PrCf)<PC> <u}°)>N~ 

+K aN,. aN.. ONm'ldl. ) Oxj Oxj Ks ~x~ l 

in which 2,, is the Lagrange multiplier. In the case 
of passive solute, one simply omits the solid part in 
equation (38). 

For brevity we only verify that the set of conditions 
(16)-(22), indeed, extremizes the functional J. By 
taking the first variation of J we get 

6J = fa~ \ ( -  PfCfu(m°) ÷ PfCfuJ°)07m~(6Mm)ex] ) df~ 

dfir L i 

+ 2Kr I ot-~7~, ) - ' , , ~ j < , , ,  

r r:,<,,.,(,,,<.] +J.,L ax, \ Ox, i 

.. O(6N,,,) (mCO(cCO <u~O))6N,. 1 
-r~S~x~ + <pC> ~ jdf~ 

+2m~(fnMmdf~+fnN,,d~ ). (39) 

After using equation (27), the integrand of the second 
integral in ~ can be further written, 

PfCruJ°) ~(6M") __ OMm JOM.,\ _ O(6Mm) 
÷ ° TZi j ) - ' f  

... 02(6M,.) + 2 K r ~ 6 ( ~ )  ..O(6M',) l~fJVlm ~ ' \ '- ] / 

(.3 O((~mm) 0 OM,. 

_ 02M . . . . . .  0(6M,~) 
- ~ , ~ t o ~ m j - ~ f  ~ . (40) 

Similarly, the integrand of the third integral, except 
the last term, becomes 

ONm (ONe\ O(6Nm) 
2Ks~xj ftO~X~ )--K~ OXm 

(9 /ON,. \ ~2N m 
-~ K~ ~xj t~xj bNm) -Ks ~ ( 3 N m )  

02(6N,.) O(6N") 
- KsNm ~ Ks OXrn 

02Nm 0 
= -Ks~(~Nm)-I-Ks~sxs 

/ONm O(,$Nm)\ O(6Nm) 
(41) 

where (28) has been used. 
Substituting equations (40) and (41) into (39) and 

making use of Gauss's theorem, we obtain 

6J=fo (--pfCft,7(m°)+prCfu, °)OMm Oxj 

02M,,\ 

+ I%... {(p~Cs)(prCf) " (0), c~2N" \ 
t ~ qU, ? - K , ~ J ( 3 N . , ) d n  

Oxj 

+ r  F{ OM,. \ 
D LtK, 

--(gs~-~]] Flj--l~rn)(~)gm)} dS 

6~Mm ? -Kf(6Mm)n m}dS + -~-xj(6Mm)Jnj 

--~Jr f P (~(6N,,,) lg~L gm 
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ON,. (6Nm) ]nj - K~(6N,.)nm } dS 

where 1-'f and F~ are respectively the fluid and solid 
portions of the surface of the cubic microcell. The 
shapes of Ff and F~ are the same on opposite faces of 
the cell due to O-periodicity. 

For  arbitrary 6Mm and 6Nm, the surface integrals 
on the interface 1-' vanish because of the boundary  
conditions. The inlegral over Ff is also zero due to O- 
periodicity and the', fact that nj is of  opposite sign on 
Ft. Similarly the integral over F~ vanishes. Condit ion 
(22) implies the same for the last two integrals. Finally 
the first two volume integrals vanish on account of 
the two governing e, quations (16) and (17). Thus equa- 
tions (16)-(22) imply equation (37). The reverse can 
also be shown by the standard argument of contra- 
diction. Thus 6J =: 0 is equivalent to the boundary 
value problems (1(3)-(22). 

PROPERTIES OF THE WIGNER-SEITZ GRAIN 

For a model microcell geometry of periodic porous 
medium we choose,, the Wigner-Seitz grain shown in 
Fig. 1 (a). 

Referring to Fig. 1 (a) and (b), we let I be one side 
of the unit  cube containing one grain, and cd be the 
diagonal length of the solid part on the upper and 
lower boundaries of the cell. It can be shown by 
elementary geometry that the solid volume is 

and the surface area of the grain is 

A~ = ~/3(1 +2~- -2a2) l  2 +3a2l 2. (43) 

The porosity is therefore 

For later use we define the shape parameter by 

(45) 
A j  ,/3(1 + 2 a - 2 ~ 2 )  +3~ 2 

which is uniquely related to n-e.  For  e = 0 the grain 
is shaped as a diaraond with n = 5/6 = 0.8333 [Fig. 
1 (b)]. For  c~ = 1, i.e. n = 1/6 = 0.1667, fluid is trapped 
and cannot  flow from one pore to another. Thus for 
cubic packing of contacting Wigner-Seitz grains the 
porosity varies continuously between 1/6 and 5/6 for 
1 > c~ > 0. We have: also performed computations for 

porosities larger than 0.8333, corresponding to grains 
fixed in space but  not  in contact [Fig. 1 (c)]. The solid 
volume and surface area of a diamond are then 
V~ = fl313/6 and A~ = x/3fl:l 2, respectively, where fl is 
defined to be the ratio of the total height of the dia- 
mond to the cell height as shown in Fig. 1 (c). 

FINITE-ELEMENT APPROXIMATION 

The plane boundaries of the Wigne~Sei tz  grain are 
particularly suited for finite elements. 

For  the Stokes cell problem, we assume that 

k o = ~k~°N (° Sj = Z s J m ) M  (rn) (46) 
l m 

where /C a, M <m) are shape functions for k~ and Sj in 
elements (/) and (m), respectively, and k~ °, S (m) are the 
unknown nodal coefficients for kq and Sj in each 
element. Substituting (46) into (36), and equating to 
zero the derivatives of J with respect to k~ ") and then 
with respect to S) m), we have 

(" ON(,) ~Na) OJ = I - - Z - - k ~  ~ dO 
~k(ij ") 3~f t~Xm l ~Xrn 

+ f N(")(~ S~") OM(m) -b~)dO = O (47) 
dt~ r \ m 6qxl 

c~J ( '  / x ~M(m) 
= ~ I~kb°N(°)-~xl-xldO=O. (48) 

~S~ m) f 

Equations (47) and (48) form a system of coupled 
matrix equations for k~ ° and S} m). The global matrix 
system is symmetric and is of the form : 

/ k(~ / A 0 v 

o A 

C O (.s(m) J 

f N(')6 u dO 

P 

= JN<°'52j dO (49) 

f N(')b3j dO 

0 

where A, B, C, D have the following matrix elements : 

ION(") ¢3N (o 
A., = j ~xj dxj dO 

B.m = f N (") ~3M(m) dO 
J Ox~ 

C.m = (N <") 63M(m) dO 
J c~x~ 
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i ~M(,~) D,,m = N ~ " ) - - d ~ )  (50) 
0x3 " 

The symmetry of the stiffness matrix in (49) 
enhances computational economy. 

Because of the symmetry of the permeability tensor, 
(k~j) = (kj~) and the symmetry of the grain geometry, 
only three coefficients among nine of (k~j) need to 
be computed, e.g. ( k ~ ) ( =  (k22) = (k33)), (k2~) 
(= (k12)) and (k23)(= (k32)). Only one component, 
say &, is needed. Also, only 1/8 of the unit cell is 
needed for computation [Fig. l(b) and (c)]. In the 
finite element calculations, quadratic tetrahedral 
elements are chosen for N (~ and linear tetrahedral 
elements for M ~'~. The frontal method [34] is used to 
solve the coupled matrix equation. 

The finite-element approximation of the convective 
diffusion problem in a cell is treated similarly. Linear 
tetrahedral elements are used to represent the 
unknowns M,, and N~,. The first variation with respect 
to the unknown nodal coefficients and the unknown 
Lagrange multiplier is then taken to obtain algebraic 
equations for these unknowns. The straightforward 
details are omitted here. 

NUMERICAL RESULTS FOR PERMEABILITY 

Computations have been performed for contacting 
grains ~ = 0.85 ~ 0.0 corresponding to porosities 
n = 0.2518 ~ 0.8333, and for fixed but non-contacting 
grains (fl = 0.9 ~ 0.5 corresponding to n = 0.8785 ~ 
0.9792). The length ratios c~ and fl have been defined 
in Fig. 1 (b) and (c). For (~p(°)/~X) = 1, the local dis- 
tributions of k 0 and Sj are first obtained ; the results 
are then used to compute the permeability. We have 
checked that (kT~)¢  0, and all other components 
vanish: (k2~)  = (k3~) = ($1) = 0, as expected from 
symmetry. Five different meshes are used, with the 
number of nodes in 1/8 of the cell being 363, 2309, 
7183, 16329 and 31091. By polynomial extrapolation, 
we get the final results for zero mesh size. Calculations 
are done on DEC Station 5000 and Cray XMP. 

The hydraulic conductivity has been measured in 
the laboratory for different granular materials and 
porosity (0.35 < n < 0.66), based on which the fol- 
lowing empirical Kozeny-Carman formula is well 
known [35, 36], 

l .3 (vs 2 
(k)  - 5 ( 1 - n )  2 \ A , l J  " (51) 

The materials examined for this formula include 
manufactured grains such as glass spheres (0.025 
cm ~ 0.1025 cm diameter), hexagonal prisms (0.48 
cm length and 0.47 cm diameter), cubes (0.56 cm) as 
well as sand and powder. A large part of the data is 
for nearly uniform spheres with porosity close or equal 
to 0.39. It should be noted that, while the Kozeny- 
Carman formula is a best fit to experimental data for 
all grain shapes, data scatter lies between 10 and 20% 

due likely to the nonuniformity of sizes and the irregu- 
larity in shapes of sand particles. 

In Fig. 2(a), the theoretical values of ( k j l )  for the 
Wigner-Seitz grain are compared with the empirical 
formula (51), for which the shape factor is given by 
(45). Within the range 0.37 < n < 0.68 for which the 
empirical formula is based on experiments, our results 
are consistent and in trend with, but fall slightly below, 
the empirical formula. Outside this range of porosities, 
the deviation increases ; but equation (51) itself is an 
extrapolation of measured data and may not be totally 
accurate. 

In Fig. 2(b), our results are compared to numerical 
values by Zick and Homsy [3] for uniform spheres of 
various packings. They calculated the drag coefficient 
for a single sphere in an infinite array normalized by 
the Stokes drag formula for a sphere in an infinite 
fluid. The permeability for cubic packings of spheres 
shown in Fig. 3 have been converted from the drag 
force results of [3]. As mentioned before, for porosity 
greater than the minimum in each packing, i.e. 
n = 0.48, 0.32, 0.26 for simple cubic(SC), body-cen- 
tered cubic(BCC), face-centered cubic(FCC), respec- 
tively, the spheres are not in contact. Discrepancies 
between the packed spheres and the Wigner-Seitz 
grains are expected to be the greatest for close packing, 
since particle interaction is affected by the geometry 
most significantly. This is indeed shown in Fig. 2(b) 
for low porosity. At higher porosity, the two theories 
agree remarkably well. 

The local variation of ko, which will be used for the 
calculation of the dispersivity tensor, is not described 
here. 

COMPUTATIONAL ASPECTS FOR CONVECTIVE 
DIFFUSION IN A CELL 

By solving for M,,  and N,, and then calculating 
the volume averages of their derivatives as defined 
in equations (25) and (26), numerical results for the 
dispersivities are obtained for two porosities : 0.38 and 
0.5. The mean flow is assumed to be directed along 
the positive x-axis (0 = 0°). By virtue of symmetry 
about the plane z = 0, the computational domain is 
then reduced to one half of the Wigner-Seitz cell in 
the region - 0 . 5 < x < 0 . 5 ,  - 0 . 5 < y < 0 . 5  and 
0 < z < 0.5. Four meshes are used with the total num- 
ber of nodes in 1/2 cell being 3610, 8125, 15376 and 
26011. For all but the largest Pe polynomial extra- 
polation is used to get the dispersivities corresponding 
to zero mesh. As a measure of convergence with 
decreasing mesh size and accuracy of extrapolation, 
an error is defined by 

6(A) -- J~jm(A)--J)jrn(O) (52) 

Dim(A) 
where/~j,~(A) is the dispersivity calculated for the finest 
mesh and /)jm(0) is the extrapolated value for zero 
mesh. The extrapolation error ranges from 0.475% 



Permeability and dispersivities of solute or heat in periodic porous media 669 

(a) 10 0 ! 
• • Wigner-Seitz Groin ..~ m / . ¢~ "  

1 0 - 1 r  o 0 Kozeny-Cormon Eq. ...~..'" ~ - ' ~  . .  = 

"~" 1 
(k11)1°- 21°-3 lO-' 

10 - 5  , , J 
0.2 0.4 0.6 0.8 1.0 

Pm-oetelO n 

(b) 100 , ,  . . . . . . .  

10 - 1  0 0 Spheres in SC .Array (Zick & Hom~j, 1982) _.,~_J 
[3 Spheres in BCC Array (Zlck & Homsy, 1982) . ~ i ~  

(kl ) 
10 - 3  

1 0 - 4  

10 -5  
0.2 ' ' ' 014 ' 016 ' ' 018 ' ' ' 1.0 

Porosity n 

Fig. 2. The permeability (kl l) for the Wigner-Seitz grain: (a) comparison with the empirical Kozen~ 
Carman fmxnula and (b) comparison with Zick and Homsy (1982)'s results for periodic array of spheres. 

for Pe = 0.1 to 2.91% for Pe = 200. For the largest 
Pe (passive solute: 300 for D L and 200 for Dr, and 
heat : 300 for both DL and DO, the results are obtained 
only by using the finest mesh. Computations for still 
higher Pe yielded errors larger than a few percent and 
are not reliable. 

COMPUTED DISPERSIVITY FOR PASSIVE 
SOLUTE 

In the models c,f a random network of capillaries 
[8-10], or randomly distributed dilute spheres [12] the 
dispersion coefficiems are independent of the direction 
of mean flow. Because of the crystalline structure of 
the cubic array, ou,r dispersivity tensor depends, how- 
ever, on the direction of the global flow. In all our 
computations the mean flow is directed along the x 
axis (0 = 0c'). D~ is diagonal with two independent 
components whicl~, are the longitudinal D E and trans- 
verse D T diffusivities" D l l  (0 ---- 0) = 0 L and 
0 2 2 ( 0  = 0) = 0 3 3 ( 0  = 0) --'~ Or. F o r  a n y  o t h e r  f l o w  

direction in the xy-plane, there are four non-zero inde- 
pendent dispersivity coefficients: D~1, D22, D33 and 
D12 = D21 by symmetry and O i 3  = D23 = 0. 

Computed values of longitudinal and transverse 

dispersivity coefficients D E and DT are shown in Fig. 
3(a) and (b), respectively for Pe up to 300 for DL and 
200 for DT, for two porosities n = 0.38 and 0.5. To 
conform with experimental literature the abscissas in 
Fig. 3(a) and (b) are the Peclet numbers defined in 
terms of the mean flow velocity averaged over f~f only, 
i.e. (u) l /nD = Pe/n. In Fig. 3(a), the longitudinal dis- 
persivity is also compared with the measured data [37] 
for simple cubic packing of uniform spheres and the 
calculations [25] for a simple cubic lattice of uniform 
spheres with n = 0.48, 0.74 and 0.82. The results for 
n = 0.48 by Koch et al. [14] based on an approximate 
analysis for dilute concentration are also included. All 
are in qualitative agreement for DL. 

From the numerical results for n = 0.38 and 0.5, we 
see that for small Pe where molecular diffusion is 
dominant, the effective diffusivity defined in (43) is 
greater for the larger porosity. The reason is that the 
cross-sectional area through which a passive solute 
can diffuse increases with porosity. It is always less 
than unity in the diffusion-dominated regime since the 
presence of solid grains reduces the diffusive flux of 
solute. At the limit of Pe = 0, the effective diffusivity 
should be close to the effective thermal conductivity 
for closely packed spheres. For a closely packed cubic 
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Fig. 3. The solute dispersion coefficients for the Wigner-Seitz grain and comparison with others; (a) the 
longitudinal dispersion coefficient DL and (b) the transverse dispersion coefficient Dr. 

array of uniform and insulated spheres with a porosity 
of 0.48, it is known that the effective conductivity is 
0.344 [38]. Our numerical value for a Wigner-Seitz 
cell with porosity of 0.5 is 0.359 after multiplying the 
value 0.718 from Fig. 3(a) by the porosity to get the 
unit cell average. Obviously the small difference stems 
from different geometry. This provides a check for 
our numerical computation. 

For  large Pe, our numerical results DL for Wigner-  
Seitz cell, as well as those by Salles et al. for uniform 
spheres, are consistent with the experimental measure- 
ments [37] and the analytical theory for dilute spheres 
[14] ; all showing that DL increases with Pe 2, when the 
mean flow is parallel to a lattice axis. (Recall from 
[14, 18] that if the flow is inclined to a lattice axis, DL 
may vary linearly with Pe.) In contrast to the case of 
small Pe, the dependence on porosity is now reversed, 
and the dispersivity increases with decreasing 
porosity. Heuristically this is because the velocity 
gradient in the pores increases as porosity decreases 
and therefore enhances microscale mixing. The longi- 
tudinal dispersion coefficient for Wigner-Seitz cell is 
also compared in Fig. 4(a) and (b) with experimental 
data for natural granular media [39-45], all showing 
that DL increases as the first power of Pe. Since the 

linear growth with Pe has been obtained in the models 
of random network of capillaries [8-11] and randomly 
and dilutely distributed spheres [12], the discrepancy 
of the power of Pe may in principle be removed by 
considering a microcell with many grains with varying 
sizes and random packing; the necessary com- 
putational task appears to be formidable, however. 

The transverse dispersivity DT computed for Wigner- 
Seitz grains is plotted in Fig. 3(b) for Pe <. 300. Our 
computations could not yield accurate results for greater 
Pe. The qualitative trend is the same as DL except that 
it is less than DL by roughly two orders of magnitude. 
Mauri [46] also finds analytically for a dilute lattice of 
uniform spheres that DT is proportional to Pe 2, for small 
Pe [46] and is eight times smaller than DL. In contrast 
Koch et al. [14] predicts that DT remains almost constant 
in Pe for very large Pe. There are no reliable measure- 
ments for DT for a regular array of spheres. Some exper- 
imental data on DT for natural granular media are avail- 
able and are shown in Fig. 5(a) and (b) [43, 47-50]. 
Although scattered, each individual data set exhibits 
linear dependence on Pe as DL. The discrepancy of DT 
between the Wigner-Seitz grain and natural media is 
again probably due to randomness and size variation of 
natural grains. 
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Fig. 4. Coraparison of D L for the Wigner-Seitz grain with experimental data for natural granular media. 

COMPUTE[)  DISPERSIVITY FOR HEAT 

With the mean flow directed along the x-axis 
(0 = 0°), the longkudinal and transverse dispersivities 
DL and DT for heat are plotted for Peclet numbers Pe 
up to 300 in Fig. 6 (a) and (b) for two porosities 
n = 0.38 and n = 0.5 ; the thermal properties for fluid 
and solid phases are assumed to be equal, i.e. Kf = Ks 
and pfCf = PsCs. Also shown are some experimental 
results for randomly packed uniform glass spheres in 
water with roughly comparable thermal properties 
[51, 52]. 

In the limit Pe =: 0, both DL and DT approach unity 
because the composite medium is homogeneous and 
there is no distinction between flf and ~s for pure 
diffusion. For simple cubic packing of spheres with 
n = 0.48 and Ks/Kf = 2, Sangani and Acrivos [38] 
gives DT = 1.46. As a check, we have also calculated 
the effective diffusivities with n = 0.5 and the same 
ratio of conductivities, and obtain Dv = 1.458. The 
small discrepancy is again due to different grain geo- 
metries. 

In the relatively high Pe region, the dispersivities 

~'We note that the results for KJKf = 0 is the porosity n' 
times the dispersivity of the passive solute. 

increase with decreasing porosity as in the case of 
passive solute (Fig. 6). This is again due to increased 
microscale mixing in the pore space caused by 
increased velocity gradient for smaller porosity value. 
The same trend has been observed for 2D array of 
cylinders in [26]. The experimental data for DL in Fig. 
6(a) show a growth ofPe m where m has been estimated 
to be 1.256 in [51] and 1.4 in [52]. The discrepancy 
between theory and experiments must again be attri- 
buted to the difference in packings. 

To see the effect of Ks/Kf, Fig. 7 shows D L  and D T  

for two porosities (n = 0.38, 0.5) and two conductivity 
ratios, KJKf = 0 and 1.t At the higher Peclet number, 
the longitudinal dispersivity DL is greater, although 
the difference is small. This increase is due to heat 
diffusion through the solid phase. When the thermal 
gradient is in the direction of the mean flow, diffusion 
through the solid phase augments dispersion Dxx in 
the fluid when KJKf ~ O. But for Dyy which is associ- 
ated with the thermal gradient normal to the flow, 
transverse dispersion is weakened by the loss of heat 
into solid. Quantitatively the effect of KJKf = 1 on 
e i t h e r  D L and DT appears to be significant only at 
relatively low Peclet number, as shown in Fig. 7(a) 
and (b). This result is reasonable since for high Pe, 
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dispersion by convect ion  th rough  the pore fluid mus t  
be dominan t  and  diffusion in the solid mus t  become 
immaterial .  

In conclusion,  we believe it to be impor t an t  to con-  
duct  fur ther  numerical  or analytical  studies for  micro- 
cells involving diffe~rent grain sizes and  r a n d o m  pack- 
ing, for the unders tand ing  and  predict ion of  flow and  
dispersion in porous  media.  
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